Identifying stably expressed genes from multiple RNA-Seq data sets

نویسندگان

  • Bin Zhuo
  • Sarah Emerson
  • Jeff H. Chang
  • Yanming Di
چکیده

We examined RNA-Seq data on 211 biological samples from 24 different Arabidopsis experiments carried out by different labs. We grouped the samples according to tissue types, and in each of the groups, we identified genes that are stably expressed across biological samples, treatment conditions, and experiments. We fit a Poisson log-linear mixed-effect model to the read counts for each gene and decomposed the total variance into between-sample, between-treatment and between-experiment variance components. Identifying stably expressed genes is useful for count normalization and differential expression analysis. The variance component analysis that we explore here is a first step towards understanding the sources and nature of the RNA-Seq count variation. When using a numerical measure to identify stably expressed genes, the outcome depends on multiple factors: the background sample set and the reference gene set used for count normalization, the technology used for measuring gene expression, and the specific numerical stability measure used. Since differential expression (DE) is measured by relative frequencies, we argue that DE is a relative concept. We advocate using an explicit reference gene set for count normalization to improve interpretability of DE results, and recommend using a common reference gene set when analyzing multiple RNA-Seq experiments to avoid potential inconsistent conclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Function of Predicted Proteins from RNA-Seq Data in Holstein and Cholistani Cattle Breeds

This study was performed to determine the digital expression profile of different genes expressed in Holstein and Cholistani breeds as well as to evaluate the performance of predicted proteins derived from differentially expressed genes between these two breeds using RNA-Seq data. For this purpose, the whole mRNA sequence for a blood sample of American Holstein and Pakistani Cholistani cattle p...

متن کامل

RNA-Seq Bayesian Network Exploration of Immune System in Bovine

Background: The stress is one of main factors effects on production system. Several factors (both genetic and environmental elements) regulate immune response to stress. Objectives: In order to determine the major immune system regulatory genes underlying stress responses, a learning Bayesian network approach for those regulatory genes was applied to RNA-...

متن کامل

Getting the most out of RNA-seq data analysis

Background. A common research goal in transcriptome projects is to find genes that are differentially expressed in different phenotype classes. Biologists might wish to validate such gene candidates experimentally, or use them for downstream systems biology analysis. Producing a coherent differential gene expression analysis from RNA-seq count data requires an understanding of how numerous sour...

متن کامل

A Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data

Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...

متن کامل

Detecting Differentially Expressed Genes with RNA-seq Data Using Backward Selection to Account for the Effects of Relevant Covariates

A common challenge in analysis of transcriptomic data is to identify differentially expressed genes, i.e., genes whose mean transcript abundance levels differ across the levels of a factor of scientific interest. Transcript abundance levels can be measured simultaneously for thousands of genes in multiple biological samples using RNA sequencing (RNA-seq) technology. Part of the variation in RNA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016